Integrity Score 810
No Records Found
No Records Found
India's first space-based solar observatory, Aditya L1, is continuously studying the Sun but will miss the total solar eclipse today that will be visible over vast swaths of North America.
The total solar eclipse is a rare event that people across the USA and several events, from skydiving to special flights, are being organized to witness the celestial phenomenon.
For the first time in almost a century, the western and northern parts of New York State will experience a total eclipse. The path of totality - a narrow stretch where the Moon obscures the Sun entirely - tracks across cities and has set the USA into a tizzy.
In its statement about the event, NASA says, "On April 8, 2024, a total solar eclipse will cross North America, passing over Mexico, the United States, and Canada. A total solar eclipse happens when the Moon passes between the Sun and Earth, completely blocking the face of the Sun. The sky will darken as if it were dawn or dusk."
But India's Aditya L1 satellite will not be able to witness the event. This is not because the Indian Space Research Organization (ISRO) has erred, but because the satellite is placed appropriately at a location that provides an uninterrupted 24x7, 365-day view of the Sun. The Indian scientists chose a spot to ensure that the satellite's view is never blocked due to an eclipse.
"Aditya L1 spacecraft will not see the solar eclipse as the moon is behind the spacecraft, at the Lagrange Point 1 (L1 point), the eclipse that is visible on Earth doesn't have much significance at that location," ISRO chairman S. Somanath told NDTV.
The Indian Aditya L1 spacecraft is placed in a halo orbit around the Lagrange point 1 (L1) of the Sun-Earth system, which is about 1.5 million km from Earth. A satellite placed in the halo orbit around the L1 point has the major advantage of continuously viewing the Sun without any occultation or eclipses. This provides a greater advantage of observing solar activity and its effect on space weather in real-time.